
Advances in Computer Science and its Applications (ISSN: 2166-2924) 78
Vol. 1, No. 1, March 2012
Copyright © World Science Publisher, United States
www.worldsciencepublisher.org

Message Level Security Realization in Web Services Using
AES and Diffie Hellman Key Exchange

1Priyadharshini M, 2Sneha Raichel Mathew, 3Baskaran R, 4Suganya.V

1,2,3,4 Department of CSE, Anna University, Chennai, India

Email: mpriya1977@gmail.com , sneharmathew@gmail.com , suganya@cs.annauniv.edu , baaski@cs.annauniv.edu

Abstract- Major usage of Internet elevates the significance of web services, which in turn makes web service security a very
challenging issue. Web Service uses SOAP to exchange information; although SOAP guarantees XML security, XML is still liable to
attacks like XML rewriting, XML bombing, external entry attack, denial of service etc. Hence providing security at the message level
seems to be important with respect to web services. This proposed work provides a method to enhance the security of the web service
at message level by encrypting the SOAP message using AES, with the help of shared key generated using Diffie Hellman key
exchange mechanism. The key exchange is implemented as service and a digital signature handler is provided to enable a secured
key exchange and is done well before the SOAP message generation. The main feature of this proposed system is that the variable
keys are used for encryption each time the request is sent which prevents hacking of messages in application invoking web services.

Key Words-Web Service Security; SOAP message; AES; Diffie Hellman; XML Security.

1. Introduction:
Web service [1] is an application stored in one machine

that can be accessed by another machine over a
heterogeneous and a geographical distributed network.
The application that accesses the web service sends a
method call to the remote machine, which processes the
call and sends a response to the application. Web service
messages are sent using SOAP. SOAP structure is

<? xml version=”1.0”encoding=”UTF-8”>
<HEAD>

<SID>Session Id</SID>
<TIMESTAMP>timestamp</TIMESTAMP>
<IP>IP address</IP>

</HEAD>
<BODY>Soap Message body</BODY>
<HASH>hash</HASH>

The message that is being sent is kept inside the SOAP
BODY enclosed by the function parameter. In spite of the
tighten security given to the message in the SOAP, it is
still liable to XML rewriting attacks [2]. Thus the
message sent within the SOAP is not secure.

Cryptography is a technique of converting a message
into a form understandable only by the sender and
receiver. Incorporating cryptographic techniques into the
SOAP message will grant a secure web service. Among
the various cryptographic techniques encryption is widely
used. Encryption can secure the data by converting the
given data to a cipher by using an encryption key and an
encryption algorithm. To decrypt the cipher one should
have access to the key. Encryption provides privacy,
confidentiality, secrecy, non-repudiation, availability,
reliability and authentication when communicated
through an unsecured channel [3].

There are mainly two types of encryption algorithms.
They are symmetric key encryption algorithm (same key
used for encryption and decryption) and asymmetric key
encryption algorithm (different key used for encryption
and decryption) [3].

Asymmetric key encryption provides confidentiality
and authentication [3]. The various symmetric key
encryption algorithm, are DES, 3DES, BlowFish and
AES. DES algorithm was introduced during1974 ever
since then it was prone to attack. To increase the
complexity of DES, 3DES was introduced; 3DES is
comparatively slower than other encryption techniques.
Blow Fish on the other hand has good performance but is
prone to attack [3, 7, 9]. AES is a relatively new and
found to be one of the effective encryption techniques
since it is strong against differential, linear, interpolation
and square attack.

An attack is usually centred to mathematics used in the
algorithm (i.e., differential and linear cryptanalysis). An
algorithm can be secured only if its hardware is also
secure. The weakness of the algorithm’s hardware can
cause it to leak out critical information. These attacks are
called side channel attack which also includes timing
attacks, simple power analysis and differential power
analysis [4]. By these attacks the cryptanalysis aims at
determining the secret key. The determination of the
secret key in long run could be avoided if the secret key
is generated just before the message exchange and the
message will be secure. The message encryption is done
using the secret key generated using the Diffie Hellman
key exchange method [8] and hence the secret key is only
know by the receiver and sender. Diffe Hellman Key
exchange could also be prone to man in the middle attack
which could again be resolved by introducing a Digital
Signature to ensure the sender’s authenticity [6].

2. Background
To say web service as secure, it should be authorized,

authenticated, confidential, anti-denial and data integrity.
Authentication is establishment of proof of identities among
entities involved in the system.[my] Authorised means the
message is send and received by the person with proper
privileges. Confidential means that the information is

Priyadharshini M, et al., ACSA, Vol. 1, No. 1, pp. 78-83, March 2012 79

known only by the sender and the receiver. Anti-denial
ensures that a message send can’t be denied. Data
integrity means the data received is not changed during
transit. To ensure security there are many standards that
are proposed by Organization for the Advancement of
Structured Information Standards (OASIS) and World
Wide Web Consortium (W3C). All these standards give a
provision to use the security mechanisms, which
sometimes could be customised to increase the level of
security.

Till now DES was often used and rarely 3DES was
used to secure SOAP message to ensure integrity. Hence
in this paper we try to propose a customisation to secure
the SOAP message using AES. Considering both the
service provider and the service requestor have their
respective public key-private key pair and the others
public key, a shared key is generated using the Diffie
Hellman approach and exchange is done by signing it
using digital signature. Then encrypt the SOAP message
using AES with the help of key generated using Diffie
Hellman and sent as request to the service provider. The
SOAP is received at the service provider; the encrypted
message is then decrypted using AES. The original
message is obtained and the service is executed to
provide the response to the service requestor.

Advance Encryption Standard (AES) algorithm a
symmetric key encryption technique was developed in
2000. Selection of the AES depends on the key size. AES
divides the message into 128 bit data block that is
supported by key size of 128, 192 and 256 bit. The
number of rounds in AES is depended on the key size
(i.e. AES128 10 rounds, AES192 12 rounds AES256 14
rounds). Working of AES can be divided into two halves
Key Expansion and Message Encryption. Key Expansion
phase expands the key into the required number of keys.
In Message encryption phase each data block goes
through n rounds depending on the key size. Each round
consists of a SubByte substitution, ShiftRow,
MixColumn and Add round key.

Diffie Hellman algorithm introduced by Whitfield
Diffie and Martin Hellman in 1976 using the concept of
discrete logarithm. It was the first system to utilize
‘public-key’or ‘asymmetric’cryptographic keys [5, 6, 8].
This algorithm gives the user full fledge advantage of not
keeping a shared key. The key can be generated as and
when required. The requestor generates a random number
rrn and creates a public key Kr = Grrn mod M which is
then sent to the provider. The provider selects another
random number prn and generates its public key Kp=Gprn

mod M. Then using the Kr and prn, the receiver generates
a shared key Ksp=Kr

prnmod M and sends Kp to the
requestor. Kp is received at the requestor end where Ksr=
Kp

rrn mod M is generated. Both the keys are the same as
Ksr= Kp

rrn mod M
= (Gprn mod M)rrnmod M [Kp=Gprn mod M]
= Gprn rrn mod M
= Grrn prn mod M
= (Grrn mod M)prn mod M
=Kr

prnmod M
= Ksp

In section 3, the system architecture for the proposed
system is discussed in detail with the process done by

each component and sequence of interactions in the
proposed system. In section 4 implementation details are
provided and the inferences are recorded and discussed.

3. Proposed Architecture
The proposed architecture includes a set of components

that are enhancements in the normal web service model to
enable and encryption scheme so as to secure the SOAP
message during the transit. The components that
constitute the proposed system are discussed below in
detail:

a) Key Management System: This component is
responsible for generation of the public key -private
key pair needed by the requestor and the provider.
The basic functionality includes generation, storage,
distribution, destruction etc., Requestor and Provider
credentials are used to obtain the public key needed
for digitally signing and verifying the keys transacted
by the Diffie Hellman. This is used by the
DSHandler for the above said purpose.

b) Client User Interface: The domain specific interface
which is part of the client web application is
designed and developed, from where the web
services are invoked. This invocation causes the
execution of services through the Security Handlers
created. This is done once the needed service with
appropriate security requirements has been
discovered.

c) Generation Public Value (Requestor): The Service
Requestor performs the following steps:

a. Select a random private value rrn
b. Using the rrn generates a Public value using

Kr=Grrn mod M
where G and M are commonly shared
parameters between the services.

c. Generate signature for Kr, DSA (Kr, PR
(requestor))

d. Sends the Public key (Kr) with the Digital
Signature generated to the provider

Kr+DSA(Kr,PR(requestor))

DS Handler component at the requestor side is
involved in generation of Digital Signature for which
key is provided by Key management system.

d) Generation Public Value (Provider): The Service
Provider performs the following steps:

a. Select a random no prn
b. Using prn generates the Public key using

Kp =Gprn mod M
c. Generate signature for Kp, DSA (Kp, PR

(provider))
d. Sends the Public key (Kp) with the Digital

Signature generated to the requestor
Kp+DSA(Kp,PR(Provider))

DS Handler component at the provider side
functions same as that in the requestor side in
generation of Digital Signature.

e) Generation Shared Key(Requestor):
DSHandler component separates digital

signature DSA(Kp,PR(provider)) and Public value Kp

and verifies the digital signature using the
PU(provider). Then the requestor generates Shared

Priyadharshini M, et al., ACSA, Vol. 1, No. 1, pp. 78-83, March 2012 80

key using the public value got from the provider Kp

using
Ksr =KP

rrn mod M

where G and M are commonly shared parameters
between the service and the rrn generated earlier.

Figure 3.1 Enhanced Web Service Architecture Implementation

Figure 3.2. Design of AES encryption round

f) Generation Shared Key(Provider):
DSHandler component separates digital

signature DSA(Kr,PR(requestor)) and Public value
Kr and verifies the digital signature using the
PU(requestor). Then the provider generates Shared

key using the public value got from the provider Kr

using
Ksp=Kr

prn mod M
where G and M are commonly shared

parameters between the service and the prn generated
earlier.

Priyadharshini M, et al., ACSA, Vol. 1, No. 1, pp. 78-83, March 2012 81

g) Request Encryption Handler: It is responsible for
extracting the message from the SOAP request and
the message acquired from the client is encrypted by
AES using Kr. AESenc(Ksr, message) and is send to
the Provider.

h) Request Decryption Handler: It is responsible for
extracting the encrypted message from the SOAP
request and decrypts it using AES algorithm with the
generated secret key.

i) Response Encryption Handler: It is responsible for
extracting the message from the SOAP response and
encrypts it using AES algorithm with the generated
secret key.

j) Response Decryption Handler: It is responsible for
extracting the encrypted message from the SOAP
response, AESenc(Ksr, message) received is
decrypted using AESdec(Ksp, AESenc(Ksr,
message))Since Ksr= Ksp. It means AESdec(Ksp,
AESenc(Ksp, message))

k) Web Service Execution: performs the requested
service for the service requestor.

AES encryption and decryption is performed using
handlers at service requestor and provider side as well. In
AES the plain text (128 bit) is represented by 4X4 byte
matrix. An AES round is composed of four operations:

1. SubBytes (SB),
2. ShiftRows (SR),
3. MixColumns (MC) and
4. AddRoundKey (AK).

The MixColumns operation is omitted in the last round
and an initial key addition is performed before the first
round. The number of rounds is variable depending on
the key length, 10 rounds for 128-bit key, 12 for 192-bit
key and 14 for 256-bit key.

The Encryption is done using the following algorithm:

encrypt()
{

Key K[1..14]=GenerateKey(Ksr)
AddRoundKey(K[1])
For (i=1;i<=14;i++)

CipherText=GenerateCipher(K[i],PlainText)
SubByte(PlainText)
ShiftRow(PlainText)
MixColumn(PlainText)

}
GenerateCipher(K,PlainText)
{
SubByte(PlainText)
ShiftRow(PlainText)
MixColumn(PlainText)
AddRoundKey(K,PlainText)
}

Decryption is done using the following algorithm:
decrypt()
{

Key K[1..14]=GenerateKey(Ksp)

AddRoundKey(K[14],Plaintext)
For(i=14;i>=1;i--)

PlainText=GeneratePlainTxt(K[i], CipherText)
InvSubByte(PlainText)
InvShiftRow(PlainText)

}
GenerateCipher(K,PlainText)
{

InvSubByte(PlainText)
InvShiftRow(PlainText)

AddRoundKey(K,PlainText)
InvMixColumn(PlainText)

}
Since AES is a symmetric algorithm encrypting and

decrypting with the same key will give back the message
The sequence of steps in the proposed system is as

follows:
1. The client invokes the web service through the user

interface.
2. Service Requestor selects a random private key

value, generate a Public key and pass on to the
Requestor DS Handler.

3. The Requestor DS Handler generates a digital
signature using the private key of the requestor.
Attaches this signature along with the public key and
sends it as SOAP request to the provider.

4. The Provider DS Handler receives request. Extracts
the message and the signature. Verifies the signature
using the public key of the requestor (for integrity).

5. Service Provider obtains the public value the
requestor from handler. Then select a random
number and generates public key which is send to the
provider.

6. Provider DS Handler extracts the message and
generates a digital signature using the private key of
the provider. Attaches this signature along with the
message and sends it as response to the requestor.

7. The Requestor DS Handler receives the request.
Extracts the message and the signature. Verifies the
signature using the public key of the provider (for
integrity).

8. Service requestor obtains the public value generates
the shared and encrypts the message using AES
algorithm with the help of encryption handler.

9. Service Provider will extract the message and
decrypt the message using AES key with the help of
decryption handler.

10. The service is then executed for the results, followed
by encryption ant provider side and decryption at
requestor side.

4. Implementation and Inferences

User Registration system which holds credit card
information for booking tickets is designed and used as
client application and that acts as the requestor. As the
provider we have a banking system which could validate
the credit card number. Since this card information is
used for payment transaction this needs to be secured
during transit for verification.

The interface information in client application is as in
the figure shown here.

Priyadharshini M, et al., ACSA, Vol. 1, No. 1, pp. 78-83, March 2012 82

Figure 4.1 User interface

The credit card number is passed for validation on click
of txtVeri button. The services designed for key exchange
and card validation is as follows:

@WebMethod(operationName = "exChange")
public String exChange(@WebParam(name = "Publickey") String
Publickey) {

key = Diffie.BASE_2.generateRandomKeys(modulus);
a_shared_secret = Diffie.getSharedSecretKey(keys[0],
modulus, Publickey);
FileOutputStream output = new FileOutputStream(
"secretkey.bin");
output.write(a_shared_secret.toByteArray());
return keys[1].toString();//Public key of the provider

}

@WebMethod(operationName = "ServicePer")
public String ServicePer(@WebParam(name = "EncMess") String
EncMess) {

if(validator.ValidCreditCheck(EncMess))
return("Valid card");

else
return("Invalid card");

}

The sequence of information passed during the service
invocation involves handlers for Diffie Hellman key
exchange as well as for AES encryption. The Diffie
Hellman key exchange is performed in a secured way by
digitally signing the key that is been exchanged. The
output for the sequence of Diffie Hellman key exchange
using Digital Signature, followed by AES using the key
generated is represented as the output window using
Figure 4.2.

Figure 4.2 Output window

For AES algorithm the time required to check all
possible keys at 50 billion keys per second for 128-bit
key length is 5 X 1021 years. The complexity here is again
increased by including the Diffie Hellman key exchange
to introduce the variable keys and integrity is maintained
using digital signature. The time taken by the system is

recorded for AES with and without Diffie Hellman and
digital signature for multiples runs.

Table 4.1 Time taken for AES with and without Diffie Hellman and
Digital Signature.

Priyadharshini M, et al., ACSA, Vol. 1, No. 1, pp. 78-83, March 2012 83

Number of
Invocations

Time taken AES
(ns)

Time Taken
AES with DH &

DS(ns)

1 15 77
2 16 79
3 16 78
4 15 78
5 16 77

The values recorded could show the increase in time
due to introduction of Diffie Hellman and digital
signature which could increase the time taken to check all
possible keys and break confidentiality and integrity of
the key exchange.

5. Conclusion and Future Work

From the implementation and inferences obtained, we
could ensure the confidentiality of the information during
transit as well as integrity in the key exchange. Though
any optimisation measure is not introduced to reduce the
time taken to do the encryption and key exchange. This is
a new enhancement not tired yet in the web service
models. This could serve as a key to open up further more
new developments in the area of message level security.
By applying stronger decision Diffie Hellman
assumptions could increase the security of systems using
Diffie Hellman key exchange.

References

[1] Yann Le Blevec, Chirine Ghedira, Djamal Benslimane, Xavier
Delatte and Zahi Jarir, ‘Exposing Web Services to Business
Partners: Security and Quality of Service Issue’,2006,1st
International Conference on Digital Information Management.

[2] K. Bhargavan, C. Fournet, A. Gordon, and G. O Shea, ‘An Advisor
for Web Services Security Policies’,
http://research.microsoft.com/~adg/Publications/details.htm#sws0
5

[3] Verma, O.P., Agarwal, R., Dafouti, D. and Tyagi,
S.,‘Performance Analysis of Data Encryption Algorithms’, 2011,
3rd International Conference on Electronics Computer
Technology (ICECT)

[4] Mohammad Zahiduf Rahaman and Mohammad Akram Hossain
‘Side Channel Attack Prevention for AES Smart Card’
Proceedings of 11th International Conference on Computer and
Information Technology (ICCIT 2008) 25-27 December, 2008,
Khulna, Bangladesh

[5] Jie Liu and Jianhua Li ‘A Better Improvement on the Integrated
Diffe-Hellman-DSA Key Agreement Protocol’ International
Journal of Network Security, Vol.11, No.2, PP.114,117, Sept.
2010.

[6] Lein Harn, Manish Mehta, Student Member, IEEE, and Wen-Jung
His ‘Integrating Diffie–Hellman Key Exchange into the Digital
Signature Algorithm (DSA)’, IEEE Communication letters, vol. 8,
No. 3, march 2004.

[7] Hamdan.O.Alanazi, B.B.Zaidan, A.A.Zaidan, Hamid A.Jalab,
M.Shabbir and Y. Al-Nabhani “New Comparative Study Between
DES, 3DES and AES within Nine Factors”Journal of computing,
vol 2, issue 3 March 2010

[8] Whitfield Diffie and Martin E. Hellman ‘New Directions in
Cryptography Invited Paper’, http://www.cfoworld.co.uk/ white-
paper/networking /3619.

[9] Shashi Mehrotra Seth, Rajan Mishra ‘Comparative Analysis Of
Encryption Algorithms For Data Communication’IJCST Vol. 2,
Issue 2, June 2011

[10] Yudong Zhang, Lenan Wu, “A Robust Hybrid Restarted
Simulated Annealing Particle Swarm Optimization Technique”,
Advances in Computer Science and its Applications, Vol.1, No.1,
pp. 5-8, 2012

[11] Iman Sadeghkhani, Ali Yazdekhasti, Arezoo Mortazavian, Nima
Haratian, “Radial Basis Function Neural Network based Approach
to Estimate Transformer Harmonic Overvoltages”, Advances in
Computer Science and its Applications, Vol.1, No.1, pp. 38-44,
2012

[12] Vikas Deshmane, “XML driven SCPI interpreter”, Advances in
Computer Science and its Applications, Vol.1, No.1, pp. 59-62,
2012

